Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

Tetraaquabis(2,6-diamine-7H-purine- κN^9)cobalt(II) benzene-1,2,4,5-tetracarboxylate tetrahydrate

Ana María Atria,^a Maria Teresa Garland^{b*} and Ricardo **Baggio**^c

^aFacultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile, ^bDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile, and ^cDepartamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

Correspondence e-mail: mtgarlan@dfi.uchile.cl

Received 5 May 2011 Accepted 28 May 2011 Online 5 July 2011

The title compound, $[Co(C_5H_7N_6)_2(H_2O)_4](C_{10}H_2O_8) \cdot 4H_2O$, is an ionic structure comprising a $[Co(Hdap)_2(H_2O)_4]^{4+}$ cation (dap is 2,6-diaminopurine) in a general position, two benzene-1,2,4,5-tetracarboxylate (btc⁴⁻) anions straddling two different inversion centres and four solvent water molecules. The structure presents a remarkable degree of pseudosymmetry, with the Co^{II} cation lying almost exactly on a noncrystallographic pseudo-inversion centre. The overall spatial arrangement can be described in terms of cationic and anionic chains running along the [111] direction and linked into a three-dimensional network by a very complex hydrogen-bonding scheme in which all the available N-H and O-H groups take part.

Comment

2,6-Diaminopurine (hereinafter dap) is an attractive ligand which has not been explored extensively. Among its many interesting features are an impressive ability to participate in hydrogen bonding, acting as both a (multiple) donor and a (multiple) acceptor and thus giving rise to extremely complex hydrogen-bonding networks. In its Hdap⁺ protonated state, the group can display a special form of tautomerism known as prototropy, consisting of the relocation of the extra proton, which has the effect of forcing a rearrangement of the charge distribution. The different forms reported so far for the cation are shown in the first scheme, and the electron-density redistribution is evidenced by the different positions of the single and double bonds around the rings. The few known structures containing the Hdap⁺ cation (Cambridge Structural Database, Version 5.3; Allen, 2002) are $[M(Hdap)_2(hpt)_2(H_2O)_2] \cdot 4H_2O$ [H₂hpt is homophthalic acid; M is Ni^{II}, (II*a*), or Co^{II}, (II*b*); Atria, Corsini et al., 2011], bis(Hdap) di-µ-croconato- $\kappa^{3}O,O':O'';\kappa^{3}O:O',O''$ -bis[tetraaqua(croconato- $\kappa^{2}O,O'$)neodymium(III)], (III) (Atria, Morel et al., 2011), and bis(Hdap)-(hpt)·7H₂O, (IV) (Atria et al., 2010). All three Hdap⁺ groups appearing in (IIa), (IIb), (III) and (IV) are different, in

that protonation takes place at different N-atom sites. The group can also act as a ligand, though with rather restricted coordination capabilities. The molecule is capable of acting as a monocoordinated ligand linking the metal site through one of its lone imidazole N atoms, but this behaviour seems to be rather uncommon in dap chemistry: until very recently only one compound with the molecule binding to a metal centre appeared in the literature (Badura & Vahrenkamp, 2002), and only in the last year have we described compounds (IIa) and (IIb) as members of a new family of isomorphous compounds with the ligand acting in a similar N-monodentate fashion. Pursuing our interest in dap and Hdap⁺ structures, we present herein the title novel cobalt transition metal complex with the molecule acting as a charged singly protonated cation (Hdap⁺), binding the metal in an N-monodentate fashion, $[Co^{II}(Hdap)_2(H_2O)_4]$ btc·4H₂O, (I), where H₄btc is benzene-1,2,4,5-tetracarboxylic acid.

Compound (I) is an ionic structure comprising a [Co- $(Hdap)_2(H_2O)_4]^{4+}$ cationic unit in a general position, chargebalanced by two btc⁴⁻ anions straddling two different inversion centres such that two independent half-anions in the asymmetric unit provide the required 4- charge. The asymmetric unit is completed by four solvent water molecules. The four aqua ligands bound to the Co^{II} centre (Fig. 1a) form a square-planar array defining the equatorial positions of an octahedron. The apical sites are occupied by slightly elongated bonds to two Hdap⁺ cations (discussed below), each coordinating via their single imidazole N-atom donor. The resulting octahedron is slightly elongated, with a mean value for the equatorial (shortest) Co-O bonds of 2.099 (6) Å, and an average of 2.146 (3) Å for the apical (longest) Co-N bonds.

Figure 1

(a) The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, with independent atoms shown as heavy bonds and filled ellipsoids, and symmetry-related atoms shown as hollow bonds and empty ellipsoids. Primed atoms are related to unprimed ones by the 'pseudo inversion' at $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$. (b) Schematic overlap of the independent unit and its 'pseudo-inverted' counterpart. No least-squares fit was performed. [Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x - 1, -y + 1, -z.]

Intramolecular bond angles at the metal centre span the narrow ranges 86.28 (4)–92.78 (4) and 175.21 (4)–178.53 (5)°. The structure presents a remarkable pseudosymmetry (pseudo-*I*-centring of the reported triclinic cell), with the Co^{II}

cation lying almost on a noncrystallographic $\overline{1}$ pseudo centre. To facilitate comparison, pseudosymmetrically related atoms have been labelled similarly (O1W, O1W', etc).

Fig. 1(b) shows the overlap of the whole independent unit and its pseudosymmetry-related counterpart, without any least-squares fitting, and the correspondence is apparent [mean deviation of the fit is 0.22 (14) Å; see *Refinement* for details].

The centrosymmetric btc⁴⁻ units are very similar to each other and the four independent carboxylate groups present almost perfect delocalization [overall C–O range = 1.2451 (19)–1.2648 (19) Å]. The groups are, however, rotated around the C–C bond, possibly to minimize steric effects, and following the demands posed by the complex hydrogenbonding scheme, with one of the COO⁻ groups being almost parallel and the remaining one nearly orthogonal to the plane of the benzyl core [rotation angles = 4.9 (1)/4.0 (1) and 83.3 (1)/ 89.8 (1)° for the corresponding COO⁻ groups in each anion].

Regarding the protonated $Hdap^+$ cation, to our knowledge the only reported structures containing the species are the above-mentioned compounds (II) to (IV), but none of them is strictly comparable with (I). The $Hdap^+$ cation in (III) bears the same proton disposition (see scheme), but in this structure the cation is not coordinated. On the other hand, $Hdap^+$ cations in (II*a*) and (II*b*) bear the same coordination behaviour but the protonation takes place at different sites (see scheme) and this has important consequences in the way in which both three-dimensional structures are built up. In (II*a*) and (II*b*), the extra H atom is located midway between the two amino groups (at N31), thus leaving the remaining atom (N41) free to make a strong intramolecular hydrogen bond accepting

Figure 2

A packing view of (I), projected down the [111] direction of the cationic and anionic chains, which are therefore seen in projection. The former are shown in bold. H atoms have been omitted for clarity.

Figure 3

The chain formation in (I). (a) The anionic hydrogen-bonded chain, with embedded pseudo-inversion centres (shown as crossed circles). (b) The cationic chain formed by π - π interactions. [Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x, -y + 1, -z + 1.]

one aqua H atom. In (I), in contrast, it is precisely atom N41 at that is protonated, thus precluding this particular type of interaction but promoting, in turn, a stronger hydrogenbonding link to the surrounding anions. As already suggested, intermolecular interactions are by far the most distinctive feature in these dap-containing structures. In the case of (I), there is an extremely large number of different possible donors (a total of 28, all of them involved in hydrogen bonding) and a comparable number of possible acceptors, as well as aromatic rings liable to be involved in $\pi - \pi$ contacts. Table 2 shows the most important hydrogen bonds and Table 3 presents $\pi - \pi$ interactions. The net result of their presence is a tightly bound three-dimensional structure, rather difficult to describe in the usual terms of a constructive process starting from strongly linked elemental bricks, further interlinked by weaker forces. However, inspection of Fig. 2 suggests one possible (though certainly not unique) description in terms of the interlinkage of cationic (heavy dark lines) and anionic (weaker lines) chains, running along the [111] direction and seen in projection in the figure. Figs. 3(a) and 3(b) give, in turn, individual views of each of these one-dimensional structures.

The anion/solvent water chain (Fig. 3*a*) is sustained internally by a network of hydrogen bonds involving solvent water molecules as donors and a mixture of water and btc⁴⁻ carboxylate O atoms as acceptors. The cationic chain (Fig. 3*b*) is, in turn, linked by π - π contacts between overlapping dap units, presented in detail in Table 3. This leaves 20 H atoms available for hydrogen bonding with the anion/solvent water chain, constituting the main factor in the assembly of the three-dimensional structure.

Experimental

2,6-Diaminopurine (0.300 g, 2 mmol) and cobalt acetate tetrahydrate (0.498 g, 2 mmol) were dissolved in water–ethanol (2:1 ν/ν , 10 ml) and the mixture was kept under reflux for 10 min. An aqueous solution

(40 ml) of benzene-1,2,4,5-tetracarboxylic acid (0.508 g, 2 mmol) and NaOH (0.080 g, 2 mmol) was added to this mixture, which was kept under reflux for another 4 h. Slow evaporation at room temperature for two weeks yielded single crystals of (I) suitable for X-ray diffraction.

Crystal data

$[Co(C_5H_7N_6)_2(H_2O)_4](C_{10}H_2O_8)$	$\beta = 94.732 \ (1)^{\circ}$
$4H_2O$	$\gamma = 92.794 \ (1)^{\circ}$
$M_r = 755.51$	$V = 1409.84 (9) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 7.5730 (3) Å	Mo $K\alpha$ radiation
b = 11.9386 (4) Å	$\mu = 0.71 \text{ mm}^{-1}$
c = 15.6694 (6) Å	T = 150 K
$\alpha = 91.026 \ (1)^{\circ}$	$0.54 \times 0.19 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	22822 measured reflections
diffractometer	6235 independent reflections
Absorption correction: multi-scan	5525 reflections with $I > 2\sigma(I)$
(SADABS in SAINT-NT;	$R_{\rm int} = 0.018$
Bruker, 2002)	
$T_{\rm min} = 0.82, T_{\rm max} = 0.89$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	36 restraints
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
6235 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
550 parameters	

Table 1

Selected bond lengths (Å).

Co1-O2W 2.0910 (11) Co1-N11' 2.1439 (12)	Co1-O1W	2.1030 (10)	Co1-O2W'	2.1009 (11)
	Co1-O1W'	2.1028 (10)	Co1-N11	2.1491 (12)
	Co1-O2W	2.0910 (11)	Co1-N11'	2.1439 (12)

The amine groups exhibited slightly different geometries, as assessed by the deviations of the amine H atoms from the least-

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D-\mathrm{H}\cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D-\mathrm{H}\cdots A$
$N21 - H21 \cdots O12^i$	0.88	1.76	2.6235 (16)	166
N41-H41···O32	0.88	1.91	2.7178 (16)	152
N51 $-$ H51 A ···O42 ^{'ii}	0.87	2.17	2.9216 (16)	144
$N51-H51B\cdots O22^{i}$	0.87	1.94	2.8097 (16)	174
$N61 - H61A \cdots O4W$	0.88	2.22	2.9832 (18)	145
N61-H61B···O32	0.88	2.24	2.9984 (17)	144
$O1W-H1WA\cdots O3W'^{iii}$	0.85	1.90	2.7174 (16)	162
$O1W-H1WB\cdots O32$	0.85	1.87	2.7004 (15)	167
$O2W - H2WA \cdots O42'^{iv}$	0.85	2.04	2.8053 (16)	150
$O2W - H2WB \cdots O42$	0.85	2.00	2.8436 (15)	169
O3W−H3WA···N31	0.85	2.05	2.8925 (17)	170
O3W−H3WB···O12′ ⁱⁱ	0.85	2.47	3.3132 (17)	172
$O4W-H4WA\cdots O42^{v}$	0.85	2.05	2.8723 (16)	162
O4W−H4WB···O12′ ⁱⁱ	0.85	1.95	2.7905 (16)	171
$N21' - H21' \cdots O12'^{vi}$	0.88	1.86	2.7007 (16)	159
$N21' - H21' \cdots O22'^{vi}$	0.88	2.54	3.2494 (17)	139
N41'-H41'···O32'	0.88	1.91	2.7533 (16)	160
$N51' - H51C \cdots O42^{vii}$	0.86	2.28	2.9789 (16)	139
$N51' - H51D \cdots O22'^{vi}$	0.87	1.85	2.7256 (17)	176
$N61' - H61C \cdot \cdot \cdot O4W'$	0.87	2.16	2.9643 (18)	154
$N61' - H61D \cdot \cdot \cdot O32'$	0.88	2.43	3.1503 (17)	140
$O1W' - H1WC \cdots O3W^{viii}$	0.85	1.92	2.7361 (16)	162
$O1W' - H1WD \cdot \cdot \cdot O32'$	0.85	1.86	2.7027 (15)	169
$O2W' - H2WC \cdots O22^{v}$	0.85	2.05	2.8569 (15)	157
$O2W' - H2WD \cdots O42'$	0.85	1.86	2.6952 (15)	168
$O3W' - H3WC \cdot \cdot \cdot N31'$	0.85	2.04	2.8864 (18)	173
$O3W' - H3WD \cdots O4W'$	0.85	2.31	2.9472 (18)	132
$O4W' - H4WC \cdots O4W^{ix}$	0.85	2.06	2.903 (2)	172
$O4W' - H4WD \cdots O12^{vii}$	0.85	1.95	2.7888 (17)	168

Symmetry codes: (i) x - 1, y + 1, z; (ii) -x, -y + 1, -z + 1; (iii) -x, -y, -z; (iv) x + 1, y, z; (v) -x + 1, -y, -z + 1; (vi) x + 1, y - 1, z; (vii) -x + 1, -y, -z; (viii) -x + 1, -y + 1, -z + 1; (ix) x, y, z - 1.

squares mean plane through the other atoms in the diaminopurine moieties: the C–NH₂ group at N51 is essentially planar, although slightly rotated around the C–N bond [with deviations of -0.15 (2) and 0.12 (2) Å from the mean plane]. In contrast, the other three amines exhibit different types and degrees of pyramidalization at the N atom. At N51', only one H atom lies significantly out of the plane [deviations of 0.02 (2) and -0.10 (2) Å], while the deviations are greater at N61 [0.33 (2) and 0.24 (2) Å] and at N61' [0.34 (2) and 0.23 (2) Å]. This varying degree of planarity for NH₂ groups is not uncommon for aromatic rings carrying two amino groups and might be due to the ability of the delocalized π -system of the ring to accommodate charge from one amino group, but not more (Linden, 2010).

The striking pseudo *I*-centring in the true primitive triclinic cell exhibited by structure (I) (see Fig. 1*b*) requires some additional description. The true unit cell is the primitive one reported herein, leading to a mean $I/\sigma(I)$ of 17.3 for all reflections and 9.1 for those with h+k+l = 2n + 1 (*I*-centring violations).

The pseudo-centring effect on the intensities does not arise (as it more typically does) from a heavy atom lying on a special position and the rest of the structure evolving more or less independently, but rather from a collective effect where all individual deviations from the pseudosymmetry are rather small. This can be seen both in Fig. 1(*b*) and, more quantitatively, from the small mean-square deviation of the separation of pseudo-related atoms and the (also small) s.u. value, *i.e.* 0.22 (14) Å. Finally, an independent structure resolution and refinement of the structure, using an '*I*-centred cell' [*viz.* including the $(\frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} + z)$ symmetry operation] and the same data set, but purged of *I*-centring violations, could be performed without any substantial problems, converging perfectly acceptably, as can be seen from the following values for the '*I*-centred' refinement

Table 3

 π - π contacts (Å, °) for (I).

Group 1/Group 2	CCD (Å)	SA (°)	IPD (Å)
$Cg1-Cg3^{\text{viii}}$ $Cg2-Cg4^{\text{iii}}$ $Cg3-Cg3^{\text{viii}}$	3.6196 (9) 3.8769 (9) 3.7438 (8)	24.4 (19) 29.6 (5) 30.03 (1)	3.29 (5) 3.37 (2) 3.241 (1)
$Cg4-Cg4^{iii}$	3.9125 (8)	31.72 (1)	3.328 (1)

Symmetry codes: (iii) -x, -y, -z; (viii) 1 - x, 1 - y, 1 - z.

(the corresponding values for the true primitive cell are given in parentheses): $N_{\text{total}} = 11306$ (22822), $N_{\text{unique}} = 3112$ (6235), $N_{I>2\sigma(I)} = 2965$ (5525), $N_{\text{parameters}} = 255$ (506), $N_{\text{restraints}} = 12$ (24), $R_1 = 0.0370$ (0.0348), $wR_2 = 0.0992$ (0.0930), S = 1.056 (1.049).

The main difficulty found during the structure resolution in the 'centred' $I\overline{1}$ space group involved the location of the water H atoms, where those of O4W in particular appeared somewhat disordered. The reason for this is clearly seen in Figs. 1(*b*) and 3(*a*), where the positions of the 'pseudo-equivalent' atoms O4W and O4W' appear as the most conspicuous deviation from the pseudo-inversion symmetry, the pseudo-centres being shown as 'crossed circles' in Fig. 3(*a*).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors acknowledge the Spanish Research Council (CSIC) for providing a free-of-charge licence to the Cambridge Structural Database. We are also grateful for funding by project Fondecyt 1071061 and Proyecto Enlace VID ENL10/09 (2010), Universidad de Chile.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3106). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Atria, A. M., Corsini, G., Herrera, N., Garland, M. T. & Baggio, R. (2011). Acta Cryst. C67, m169–m172.
- Atria, A. M., Garland, M. T. & Baggio, R. (2010). Acta Cryst. C66, 0547– 0552.
- Atria, A. M., Morel, M., Garland, M. T. & Baggio, R. (2011). Acta Cryst. C67, m17–m21.
- Badura, D. & Vahrenkamp, V. (2002). Inorg. Chem. 41, 6013-6019.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.22A (including SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Linden, A. (2010). Private communication.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.